

TURLOCK GSP Projected Conditions Baseline

JOINT TECHNICAL ADVISORY COMMITTEES (TACs) MEETING DECEMBER 17, 2020

MEETING AGENDA

Meeting Goals:

Review of the Baseline Conditions Integrated Modeling Results

Water Budgets

- By Subbasin
- By Each GSA
- Groundwater Levels
 - GW Elevation Contours
 - GW Level Hydrographs

What is C2VSimFG?

VISION

To better understand the historical evolution of water resources in the Central Valley and planning of future water management programs at the regional level under different land use development and climatic conditions.

C2VSIMTM MODEL DATA SETS

Model Grid Network

Stakeholder Collaboration

C2VSIMTM BASELINE DEVELOPMENT

WATER BUDGETS: DEFINING TIME FRAMES

To Be Analyzed in Q1-21

Historical Conditions

Historical

- * Land use
- * Water use
- * Hydrology

Current Conditions

Current * Land use * Water use Historical

* Hydrology

Projected Conditions

Projected

* Land use

* Water use

Historical

* Hydrology

Projected with Climate Change

Projected * Land use * Water use Projected * Hydrology

HISTORICAL & BASELINE HYDROLOGIC PERIOD

TURLOCK SUBBASIN GSP BASELINE ASSUMPTIONS

Baseline Feature	Projected Conditions
Hydrologic Conditions	50-Yr Hydrology (Same as WY 1969-2018)
Land Use	Held constant using 2015 land use and cropping patterns
Ag. Demand	Estimated by model reflective of land use with modern irrigation practices
Ag. Surface Water Supply	Surface water supplies as reported by TID's reservoir operations Model (TRS)
Ag. Groundwater Supply	Groundwater supply estimated to meet demand not otherwise met by surface water
Urban Demand	Projected urban demand based on 2015 UWMPs or other planning documents
Municipal RW Supplies	Projected urban demand based on 2015 UWMPs or other planning documents
Municipal GW Supplies	Projected urban groundwater based on 2015 UWMPs distributed to existing wells
Municipal Wells	Current facilities in place and proposed wells when information available

LAND & WATER USE BUDGETS

PROJECTED CONDITIONS BASELINE

Land & Water Use: Turlock Subbasin

Notes:

- 1. Baseline period uses the hydrology from WY1969-2018, representing a 50year hydrologic period required by the GSP regulations
- 2. Projected ag demand is estimated based on the 2015 land use and cropping patterns and monthly hydrologic data for the 50-yr period, and current irrigation practices
- 3. Ag deliveries include surface water and groundwater supplied by irrigation districts through the irrigation conveyance network
- 4. Ag pumping consists of includes private (non-district) groundwater pumping

Water Year (Oct-Sept) / Baseline Model Year

Ag. Demand Ag. Pumping Ag. Deliveries

Land & Water Use: Turlock Subbasin

Notes:

- 1. Baseline period uses the hydrology from WY1969-2018, representing a 50year hydrologic period required by the GSP regulations
- 2. Projected urban demands are estimated based on the per-capita water use and population projections through 2040, and no population growth past 2040.
- 3. Urban pumping consists of groundwater pumping by municipalities and private groundwater wells across the subbasin

Water Year (Oct-Sept) / Baseline Model Year

□ Urban Demand □ Urban Pumping

LAND & WATER USE: WTSGSA

Notes:

- 1. Baseline Period uses the hydrology from WY1969-2019, representing a 50year hydrologic period required by the GSP regulations
- 2. Projected ag demand is estimated based on the 2015 land use and cropping patterns and monthly hydrologic data for the 50-yr period, and current irrigation practices
- 3. Ag deliveries include surface water and groundwater supplied by irrigation districts through the irrigation conveyance network
- 4. Ag pumping consists of includes private (non-district) groundwater pumping

Water Year (Oct-Sept) / Baseline Model Year

Ag. Demand Ag. Pumping Ag. Deliveries

- 5. Ag. deliveries include:
- Turlock ID surface water deliveries
- Riparian diverters
- TID groundwater delivered as surface water
- City of Modesto WWTP recycled water supplied for ag use

LAND & WATER USE: WTSGSA

Notes:

I. Baseline period uses th

year hydrologic period required by the GSP regulations

- 2. Projected urban demands are estimated based on the per-capita water use and population projections through 2040, and no population growth past 2040.
- 3. Urban pumping consists of groundwater pumping by municipalities and private groundwater wells across the subbasin

Water Year (Oct-Sept) / Baseline Model Year

□ Urban Demand □ Urban Pumping

LAND & WATER USE: ETSGSA

Notes:

- 1. Baseline Period uses the hydrology from WY1969-2019, representing a 50year hydrologic period required by the GSP regulations
- 2. Projected ag demand is estimated based on the 2015 land use and cropping patterns and monthly hydrologic data for the 50-yr period, and current irrigation practices
- 3. Ag Deliveries include Ag. deliveries include:
- Merced ID surface water
- Riparian diverters on Merced and Tuolumne Rivers
- 4. Ag pumping consists of includes private (non-district) groundwater pumping

Water Year (Oct-Sept) / Baseline Model Year

Ag. Demand Ag. Pumping Ag. Deliveries

LAND & WATER USE: ETSGSA

Notes:

- 1. Baseline Period uses the hydrology from WY1969-2018, representing a 50-year hydrologic period required by the GSP regulations
- 2. Projected urban demands are insignificant and represent rural residential demands estimated from the California Water Plan data
- 3. Urban Pumping is amount of groundwater pumped to meet the Urban Demand

Water Year (Oct-Sept) / Baseline Model Year

□ Urban Demand □ Urban Pumping

OPERATIONAL WATER BUDGETS

PROJECTED CONDITIONS BASELINE

OPERATIONAL WATER BUDGET DEFINITION

Operational water budget presents components of the water budget that reflect the direct processes of water supply operations by each of the agricultural and/or urban entities. These budgets help assess if an entity is net extractor from or net contributor to the groundwater basin.

This includes:

- Groundwater pumping
- Recharge and deep percolation of both precipitation and applied water
- Recharge from agricultural conveyance and distribution systems
- This excludes:
 - Recharge from natural surface water bodies
 - Subsurface flow as a result of operations simulated

The Turlock Subbasin as a whole is a net extractor from the GW system

THE WTSGSA

IS A NET CONTRIBUTOR TO THE GW SYSTEM

THE ETSGSA IS A NET EXTRACTOR FROM THE GW SYSTEM

PROJECTED CONDITIONS BASELINE

RIVER OPERATIONS: BASELINE ASSUMPTIONS

Tuolumne River

- Tuolumne River System
 Management Model
 - Tuolumne River inflow
 - La Grange Dam diversions
 - Canal & reservoir seepage
 - Turlock Lake
 - Upper Main
 - Lower System
 - TID farm gate deliveries
 - TID operational spills

Merced River

- MIDH2O & MercedWRM
 - Merced River inflow
 - Merced ID Diversions
 - Northside Canal at Merced Falls
 - Main Canal at Crocker-Huffman Dam
 - Northside Canal farm gate deliveries
 - Northside Canal seepage/spills

San Joaquin River

- C2VSimFG Historical Operations
 - Riparian Diversions

STREAM-AQUIFER INTERACTION: TURLOCK SUBBASIN

Water Year (Oct-Sept) / Baseline Model Year

STREAM-AQUIFER INTERACTION: WTSGSA

Water Year (Oct-Sept) / Baseline Model Year

STREAM-AQUIFER INTERACTION: ETSGSA

Water Year / Simulation Year Water Year (Oct-Sept) / Baseline Model Year

Historical Simulation: 1991-2000

Historical Simulation: Years 2006-2015

Notes:

- This chart shows points along each river course that is estimated to be either gaining, losing, or a mixed condition over the long-term hydrologic conditions
- Determination of losing or gaining at each point is made based on the results of the Integrated Modeling

Historical Simulation: Years 2006-2015

Baseline Simulation: Years 1-10

Notes:

- This chart shows points along each river course that is estimated to be either gaining, losing, or a mixed condition over the long-term hydrologic conditions
- Determination of losing or gaining at each point is made based on the results of the Integrated Modeling

Baseline Simulation: Years 1-10

Baseline Simulation: Years 41-50

Notes:

- This chart shows points along each river course that is estimated to be either gaining, losing, or a mixed condition over the long-term hydrologic conditions
- Determination of losing or gaining at each point is made based on the results of the Integrated Modeling

Stream Flow: Tuolumne River at Modesto

STREAM FLOW: MERCED RIVER AT STEVINSON

SUBSURFACE FLOW

PROJECTED CONDITIONS BASELINE

Boundary and Subsurface Flows: Turlock Subbasin

Subsurface Flows from Merced Subbasin

Subsurface Flows from Modesto Subbasin

□ Subsurface Flows from Delta-Mendota Subbasin

■ Inflow from Foothills

Notes:

• This chart shows annual net boundary and subsurface flows across each of the boundaries between the Turlock Subbasin and the neighboring Subbaisns

Boundary and Subsurface Flows: WTSGSA

Water Year (Oct-Sept) / Baseline Model Year

Subsurface Flows from Turlock GSA East
 Subsurface Flows from Modesto Subbasin

Subsurface Flows from Merced Subbasin
 Subsurface Flows from Delta-Mendota Subbasin

Notes:

• This chart shows annual net boundary and subsurface flows across each of the boundaries between the Turlock Subbasin and the neighboring Subbaisns

BOUNDARY AND SUBSURFACE FLOWS: ETSGSA

Water Year (Oct-Sept) / Baseline Model Year

Subsurface Flows from Turlock GSA East

Subsurface Flows from Modesto Subbasin

Inflow from Foothills

Subsurface Flows from Merced Subbasin
 Subsurface Flows from Delta-Mendota Subbasin

Notes:

• This chart shows annual net boundary and subsurface flows across each of the boundaries between the Turlock Subbasin and the neighboring Subbaisns

GROUNDWATER BUDGETS

PROJECTED CONDITIONS BASELINE

GROUNDWATER BUDGET: TURLOCK SUBBASIN

Groundwater Pumping

■ Deep Percolation

Canal and Reservoir Recharge

GROUNDWATER BUDGET: TURLOCK SUBBASIN

Groundwater Pumping

Deep Percolation

Canal and Reservoir Recharge

Stream/Aquifer Interaction

GROUNDWATER BUDGET: TURLOCK SUBBASIN

COMPLETE GROUNDWATER BUDGET TURLOCK SUBBASIN

Water Year (Oct-Sept) / Baseline Model Year

■ Deep Percolation

- Groundwater Pumping
- Stream/Aquifer Interaction
- GW Storage Depletion

- Canal and Reservoir Recharge □ Subsurface Flow from Adjacent Areas
 - Inflow from Foothills

WTSGSA: COMPLETE GROUNDWATER BUDGET

ETSGSA: COMPLETE GROUNDWATER BUDGET

□ Subsurface Flow from Adjacent Areas

Inflow from Foothills

- Groundwater Pumping
- Stream/Aquifer Interaction
- GW Storage Depletion

WATER LEVELS

PROJECTED CONDITIONS BASELINE

GROUNDWATER LEVEL CONTOURS (UPPER)

Historical Simulation: Fall 2014 Western **Upper** & Eastern Aquifer Baseline Simulation: Year 46 (Fall 2014 Hydrology) Western **Upper** & Eastern Aquifer

GROUNDWATER LEVEL CONTOURS (LOWER)

Historical Simulation: Fall 2014 Western **Lower** & Eastern Aquifer Baseline Simulation: Year 46 (Fall 2014 Hydrology) Western Lower & Eastern Aquifer

GROUNDWATER LEVEL HYDROGRAPHS

Hydrographs Available on Google Maps

NEXT STEPS

Upcoming Modeling Scenarios

- Sustainable Yield
- Climate Change

Continue coordination with local GSAs

QUESTIONS?

