

TURLOCK GSP

PROJECTS & MANAGEMENT ACTIONS

TECHNICAL ADVISORY COMMITTEE SEPTEMBER 13, 2021

Agenda: Projects & Management Actions

Introduction

- Review of existing projects
- Explanation of scenario breakdown

Projects and Management Actions

- Model Input: Proposed Agricultural Projects
- Model Results: Water Budgets
- Model Results: Groundwater Hydrographs

Next Steps

PROJECTS & MANAGEMENT ACTIONS

#	Urban and Municipal Projects	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
1	Regional Surface Water Supply Project	X	X	X	X	х
2	Waterford/Hickman Surface Water Supply Project	X	X	X	X	х
3	Dianne Storm Basin	X	X	X	X	х
4	Stanislaus State Stormwater Recharge	X	X	X	X	х
	WTSGSA Projects		·			
5	TID On-Farm Direct Recharge Project (in WTSGSA)		X		X	х
6	Recycled water to TID from City of Turlock		X		X	х
7	TID Ceres Main Regulating Reservoir		X		X	х
	ETSGSA Projects					
8	Agricultural Recharge Project (in ETSGSA)			X	X	х
9	Mustang Creek Flood Control Recharge Project			X	X	х
10	Upland/Waterford Pipeline			X	X	х
	Subbasin					
11	Demand Reduction					x

Water Year Type	Number of Years	Percentage		
W	17 / 50	34 %		
AN	7 / 50	14 %		
BN	4 / 50	8 %		
D	8 / 50	16 %		
С	14 / 50	28 %		
W/AN	24 / 50	48 %		
BN/D/C	26 / 50	52 %		

TID On-Farm Recharge

(within TID Service Area)

Application

- 2,000 acres of non-ponded crops
- Applied at two feet per month

On W and AN water years

8,000 AFY Direct Recharge: Canal Seepage: 2,950 AFY Total: 10,950 AFY

50-Year Average

- **Direct Recharge:** 3,800 AFY Canal Seepage: 1,400 AFY 5,200 AFY
- Total:

Recycled water from the City of Turlock

- Recycled water to parcels within TID
- 2,000 AFY of in-lieu recharge during the irrigation season

<u>Ceres Main Regulating</u> <u>Reservoir</u>

 New reservoir on Ceres Main Canal resulting in a spill reduction of 10,000 AFY

	Reduced	pumping	600 AFY
--	---------	---------	---------

Direct Recharge 400 AFY

ETSGSA Agricultural Recharge (TID out of district deliveries)

- In-lieu Recharge Assumptions
 - SW deliveries to existing users
 - Meet demand in irrigation season
- Direct Recharge Assumptions
 - Total Area:3,000 acres
 - Participation Rate:Recharge Rate:

- 1,500 acres
- 2 feet/month
- Recharge Period:
- Total Capacity:
- Jan-Feb* 6,000 AFY

ETSGSA Agricultural Recharge (TID out of district deliveries)

In-lieu Recharge

- Up to 8,800 AFY in W and AN years
- Split across irrigation season
- Long term avg of 3,400 AFY

Direct Recharge

- Up to 6,000 AFY of flood flows
- Long term avg of 1,600 AFY
- In January and February

Total Recharge

- Up to 14,800 AFY
- Long term avg of 5,000 AFY

	<u>Mustang</u> <u>Creek</u>	<u>Upland</u> <u>Pipeline</u>
W	980	١,770
AN	600	١,770
BN	495	900
D	325	400
С	265	400
Average	583	I,098

<u>Mustang Creek Flood</u> <u>Control Recharge</u>

- Direct Recharge Volume 583 AFY
- Data Source: Mustang Creek Watershed Proposed Drywell Pilot Study of Enhanced Groundwater recharge

Upland/Waterford Pipeline <u>Recharge</u>

- Direct Recharge Volume 1,098 AFY
- Data Source: ETSGSA & Merced ID

	<u>Mustang</u> <u>Creek</u>	<u>Upland</u> <u>Pipeline</u>
W	980	١,770
AN	600	١,770
BN	495	900
D	325	400
С	265	400
Average	583	1,098

Scenario	Project	Direct Recharge	In-Lieu Recharge	Pumping
tts	TID On-Farm Recharge	5,200		
Projec rio 1)	Recycled water from TUR		2,000	
/TSGSA (Scena	Ceres Main Regulating <u>Reservoir</u>	400		-600
N	WTSGSA Projects	5,600	2,000	-600
S	ETSGSA Agricultural <u>Recharge</u>	١,600	3,400	
Project ario 2)	<u>Mustang Creek Flood Control</u> <u>Recharge</u>	600		
ETSGSA (Scen	Upland/Waterford Pipeline <u>Recharge</u>	1,100		
	ETSGSA Projects	3,300	3,400	
ALL	All Projects	8,900	5,400	-600

Note: All values are in acre-feet per year and represent the average annual yield over the 50-year simulation period

LAND & WATER USE BUDGET

		Baseline	Scenario I (Urban)	Scenario 2 (WTSGSA)	Scenario 3 (ETSGSA)	Scenario 4 (Cumulative)	Scenario 4 Impact
ו Jse	Urban Demand	75,800	74,200	74,200	74,200	74,200	-1,600
Jrbar ater L	Urban Surface Water	0	17,600	17,600	17,600	17,600	+17,600
Na U	Urban Pumping	75,800	56,600	56,600	56,600	56,600	-19,200
	Demand	781,600	781,600	781,600	781,600	781,600	0
ural Jse	Surface Water Deliveries	491,400	487,800	487,800	491,200	491,200	-200
Agricultu Water L	Muni. Offset Pumping to Ag	0	2,200	2,200	2,200	2,200	+2,200
	Recycled Water to Ag	0	0	2,000	0	2,000	+2,000
	Private Pumping	290,200	291,600	289,600	288,200	286,200	-4,000
Other	Canal, Reservoir, and Direct Recharge	85,400	85,900	91,500	89,200	94,800	+9,400
	TID Agency Pumping	51,200	51,200	50,600	51,200	50,600	-600

Impact = Scenario - Baseline

GROUNDWATER BUDGET

	Baseline	Scenario I (Urban)	Scenario 2 (WTSGSA)	Scenario 3 (ETSGSA)	Scenario 4 (Cumulative)	Scenario 4 Impact
Deep Percolation	258,400	258,200	258,600	258,700	259,100	+700
Canal, Reservoir, and Direct Recharge	85,400	85,900	91,500	89,200	94,800	+9,400
Net Stream Seepage	36,900	31,300	28,600	29,600	26,900	-10,000
Inflow from Foothills	2,100	2,100	2,100	2,100	2,100	0
Net Subsurface Flow from Adjacent Subbasins	28,900	21,400	16,700	17,000	12,300	-16,600
Groundwater Pumping	417,200	401,600	399,000	398,200	395,600	-21,600
Groundwater Storage Deficit	5,500	2,700	1,500	1,600	400	-5,100

Impact = Scenario - Baseline

SGMA SUSTAINABILITY INDICATORS

Undesirable results are significant and unreasonable conditions for one or more of the following :

- I. Chronic lowering of groundwater levels
- 2. Reduction of groundwater in storage
- 3. Seawater intrusion not applicable to Turlock Subbasin
- 4. Degraded water quality
- 5. Land subsidence (use GWL as a proxy)
- 6. Depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial uses of the surface water

PRELIMINARY DRAFT; SUBJECT TO REVISION

GROUNDWATER BUDGET

CHANGE IN GROUNDWATER STORAGE

INTERCONNECTED SURFACE WATER

NEXT STEPS

Demand Management

- Compliance with SMC6 Depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial uses of the surface water.
- Scenario 5 Preform demand management scenario to ensure SMCs are met for the interconnected surface water.

